Loading


Help:Math

From DynaWiki

Jump to: navigation, search
 
Line 5: Line 5:
|-
|-
|Inline Math
|Inline Math
-
|<pre>The Lorentz factor [math]\gamma[/math] was greater than one.</pre>
+
|<pre>The Lorentz factor [math]\gamma[/math] was over one.</pre>
-
|The Lorentz factor [math]\gamma[/math] is greater than one.
+
|The Lorentz factor [math]\gamma[/math] was over one.
|-
|-
|Block Math
|Block Math
-
|<pre>[mathb]\Delta T^{\prime}\;=\;\frac{\Delta T}{\sqrt{1\;-\;\frac{v^{2}}{c^{2}}}}[/mathb]</pre>
+
|<pre>
-
|[mathb]\Delta T^{\prime}\;=\;\frac{\Delta T}{\sqrt{1\;-\;\frac{v^{2}}{c^{2}}}}[/mathb]
+
[mathb]
-
|-
+
\Delta T^{\prime}\;=\;
-
|Block Math
+
\frac{\Delta T}{\sqrt{1\;-\;\frac{v^{2}}{c^{2}}}}
-
|<pre><math>\operatorname{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt = \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2n}}</math></pre>
+
[/mathb]
-
|<math>\operatorname{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt = \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2n}}</math>
+
</pre>
 +
(To enter math on multiple lines wrap it in nowiki tags.)
 +
|<nowiki>
 +
[mathb]
 +
\Delta T^{\prime}\;=\;
 +
\frac{\Delta T}{\sqrt{1\;-\;\frac{v^{2}}{c^{2}}}}
 +
[/mathb]</nowiki>
|}
|}

Latest revision as of 05:53, 6 October 2010


All material copyright 1996-2011 Dynaverse.Net / XenoCorp Inc. unless otherwise noted. All Rights Reserved.
Site Map
Loading...